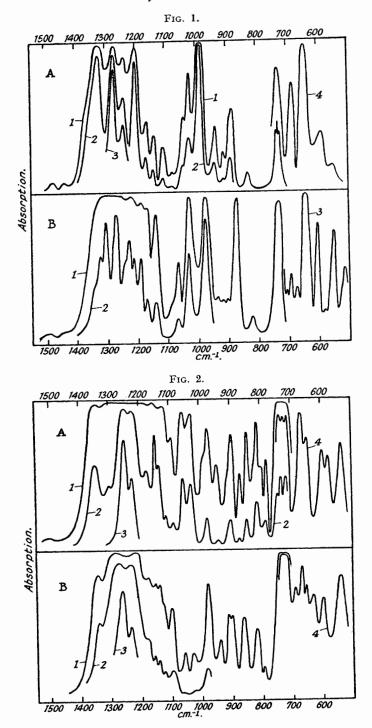
## 292. Infra-red Spectra of Fluorinated Hydrocarbons. Part III.

By H. W. THOMPSON and R. B. TEMPLE.

The infra-red absorption spectra of some fluorinated hydrocarbons have been measured between 2 and 20  $\mu$ . These include fully fluorinated *cyclo*hexane, methyl*cyclo*hexane, *n*-pentane, and 2:3-dimethylpentane, *o*-, *m*-, and *p*-fluoro- and 2:4-difluoro-toluene; benzotrifluoride, *m*- and *p*-fluoro- and 2:5-difluoro-benzotrifluoride. The significance of some of the bands in terms of the molecular vibration frequencies has been discussed. The measurements provide useful data for analytical work on these compounds.

THIS paper summarises measurements on the infra-red absorption spectra of some fully fluorinated paraffins and naphthenes, and partly fluorinated toluenes. The original aim of the work was to explore the use of infra-red absorption for analysis of mixtures of these compounds, both in presence of each other and in the presence of contaminants. However, current interest in compounds containing fluorine, and fluorocarbons in particular, adds interest to the results although at present few vibrational assignents can be made.

## EXPERIMENTAL.


The spectrometers and other experimental arrangements were as described in the two preceding papers. Slit widths of 4-5 cm.<sup>-1</sup> were used over the important range  $6-20\mu$ . The compounds were supplied by the research laboratory of I.C.I. (General Chemicals) Ltd., and had the following b. p.s: dodecafluorocyclohexane, 72° (m. p. 50°); tetradecafluoromethylcyclohexane, 77°; hexadecafluoro-*n*-heptane, 82°; hexadecafluoro-2: 3-dimethylpentane, 82°; benzotrifluoride,  $103^{\circ}/757$  mm.; *m*-fluorobenzotrifluoride,  $102\cdot5^{\circ}/755$  mm.; 2: 5-difluorobenzotrifluoride,  $109-109\cdot5^{\circ}$ ; *m*-fluorotoluene,  $116\cdot5^{\circ}/755$  mm.; *p*-fluorotoluene,  $116\cdot5^{\circ}/753$  mm.; 2: 4-difluorotoluene,  $114\cdot5^{\circ}/757$  mm. o-Fluorotoluene was a B.D.H. product, purified by redistillation. Results and Discussion.—Figs. 1 and 2 show the spectra between 6 and  $20\mu$  of the fully fluorinated parafins and naphthenes, measured as vapours. With these compounds the absorption bands at

Results and Discussion.—Figs. 1 and 2 show the spectra between 6 and  $20\mu$  of the fully fluorinated paraffins and naphthenes, measured as vapours. With these compounds the absorption bands at shorter wave-lengths are feeble and cannot include any fundamental vibrations. The positions of the bands (cm.<sup>-1</sup>) are listed in Table I. An assignment of vibration frequencies to particular normal modes

| INDEE I.                         |           |                                  |           |                                    |           |                                                  |           |
|----------------------------------|-----------|----------------------------------|-----------|------------------------------------|-----------|--------------------------------------------------|-----------|
| C <sub>6</sub> F <sub>12</sub> . |           | C <sub>7</sub> F <sub>14</sub> . |           | $CF_3 \cdot [CF_2]_5 \cdot CF_3$ . |           | $CF_3 \cdot [CF(CF_3)]_2 \cdot CF_2 \cdot CF_3.$ |           |
| 555                              | 1023      | 512                              | 935       | 535                                | 948       | 539                                              | 909       |
| 586                              | 1041      | 546                              | 975 s.    | 575                                | 977       | 595                                              | 944       |
| 641 s.                           | 1080      | 578?                             | 1030 s.   | 596                                | 990       | 635                                              | 982       |
| 680 s.                           | 1161      | 601 m.                           | 1062 m.   | 651                                | 1030 s.   | 652                                              | 1028      |
| 730 s.                           | 1200 v.s. | 645 s.                           | 1137 s.   | 669 s.                             | 1058 s.   | 667                                              | 1058      |
| 831                              | 1240 m.   | 671                              | 1170 m.   | 714 s.                             | 1095      | 690                                              | 1100      |
| 883                              | 1270 v.s. | 690                              | 1185 m.   | 725 s.                             | 1120      | 730 v.s.                                         | 1140      |
| 913                              | 1323 v.s. | 709                              | 1212 m.   | 741 s.                             | 1140      | 795                                              | 1150      |
| 940                              | 1443      | 730 s.                           | 1229 v.s. | 782                                | 1150 v.s. | 815                                              | 1178      |
| 985 v.s.                         | 1480      | 822                              | 1270 v.s. | 800                                | 1183      | 860                                              | 1235 v.s. |
|                                  |           | 870 s.                           | 1302 v.s. | 812                                | 1230 v.s. | 900                                              | 1260 v.s. |
|                                  |           | 900                              | 1322      | 846                                | 1250 v.s. |                                                  |           |
|                                  |           | 916                              |           | 870                                | 1305      |                                                  |           |
|                                  |           |                                  |           | 896                                | 1348      |                                                  |           |

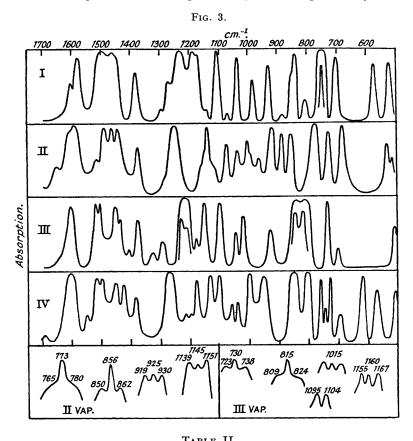
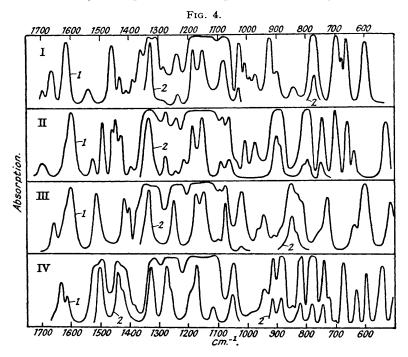

is at present impossible. Fully fluorinated *cyclo*hexane shows four very intense bands at 985, 1200, 1270, and 1320 cm.<sup>-1</sup>. The last three of these may be connected with stretching vibrations of C-F bonds. The band at 985 might be connected with the ring of six carbon atoms, since *cyclo*hexane and its derivatives usually have a strong band in this region, and the open-chain, fully fluorinated hydrocarbons do not appear to have a similar band. The band of fully fluorinated *cyclo*hexane at 730 cm.<sup>-1</sup> shows a contour

TABLE I.



with three sub-maxima. It may be connected with the deformation of  $CF_2$  groups, since it is of about the correct magnitude for such a mode and a strong band of this value occurs with all the fluorocarbons studied.


Fully fluorinated methylcyclohexane also has a group of intense bands between 1200 and 1350 cm.<sup>-1</sup>, presumably connected with stretching vibrations of C-F bonds. It also shows the intense band at



| Τа | BLE | II. |
|----|-----|-----|
|    |     |     |

|                  |            |                          | IABLE II. |            |                  |                             |
|------------------|------------|--------------------------|-----------|------------|------------------|-----------------------------|
|                  |            |                          |           |            |                  | 2 : 4-Difluoro-<br>toluene. |
| o-Fluorotoluene. |            | <i>m</i> -Fluorotoluene. |           | p-Fluoro   | p-Fluorotoluene. |                             |
| Raman.           | IRed.      | Raman.                   | IRed.     | Raman.     | IRed.            | IRed.                       |
| 185              |            | 209                      |           | 311        |                  | 505                         |
| 274              |            | 243                      |           | 342        | ·                | 567                         |
| 428              |            | 298                      |           | 455        |                  | 615                         |
| 530              | 528        | 444                      |           | 501        | 509              | 694                         |
| 576              | 578        | 512                      | 518       | <b>642</b> |                  | 725                         |
|                  | 703        | 527                      | 532       | 698        | 699              | 743                         |
| 747              | 752        | 552                      |           | 728        | 729              | 758                         |
|                  | 807        |                          | 685       | 824        | 820              | 805                         |
|                  | <b>842</b> | 728                      | 730       | 843        | 842              | 850                         |
| 848              | 850        | 775                      | 778       |            | 928              | 952                         |
|                  | 886        | 852                      | 857       | 995        |                  | 1000                        |
|                  | 934        |                          | 888       |            | 1018             | 1040                        |
| 986              | 985        |                          | 922       |            | 1046             | 1060                        |
| 1037             | 1037       |                          | 968       |            | 1098             | 1098                        |
| 1071             | 1072       |                          | 995       | 1158       | 1151             | 1131                        |
| 1110             | 1108       | 1003                     | 1004      |            | 1179             | 1179                        |
| 1149             | 1145       |                          | 1039      | 1213       | 1210             | 1200                        |
|                  | 1172       | 1078                     | 1075      |            | 1235             | 1215                        |
|                  | 1193       | 1153                     | 1143      | 1294       | 1292             | 1270                        |
| 1233             | 1233       | 1254                     | 1255      |            | 1325             | 1380                        |
| 1277             | 1275       | 1266                     | *******   | 1380       | 1376             | 1425                        |
|                  | 1298       | 1379                     | 1376      |            | 1408             | 1450                        |
| 1381             | 1382       | 1445                     | 1445      |            | 1435             | 1496                        |
| 1441             | 1445       |                          | 1465      | 1456       | 1450             | 1515                        |
|                  | 1465       |                          | 1486      |            | 1505             | 1550                        |
|                  | 1500       |                          | 1515      |            | 1518             | 1600                        |
| 1583             | 1580       | 1590                     | 1590      | 1605       | 1605             | 1695                        |
|                  | 1600       | 1618                     | 1610      |            |                  |                             |
| 1618             |            |                          | 1655      |            |                  |                             |

975 cm.<sup>-1</sup>, and the band at 730 cm.<sup>-1</sup> again shows contour. With the two fully fluorinated paraffins there are intense bands near 1250 and 730 cm.<sup>-1</sup> which again probably relate to stretching and deformational vibrations of C-F bonds. Again the spectra are too complex for detailed analysis at present.



| TABLE 1 | 1 | T |
|---------|---|---|
|---------|---|---|

|        |          |           | INDLE II  | 1.                             |                                |                              |
|--------|----------|-----------|-----------|--------------------------------|--------------------------------|------------------------------|
|        | Benzotri | fluoride. |           | <i>m</i> -Fluoro-<br>benzotri- | <i>p</i> -Fluoro-<br>benzotri- | 2 : 5-Difluoro-<br>benzotri- |
|        | Denzotn  | inuonide. |           | fluoride.                      | fluoride.                      | fluoride.                    |
| Raman. | IRed.    | Raman.    | IRed.     | IRed.                          | IRed.                          | IRed.                        |
|        | 1Red.    | Itaman.   |           |                                |                                |                              |
| 139    |          | 1110      | 1080 v.s. | 526 s.                         | 510                            | 503                          |
| 339    |          | 1116      |           | 637                            | 600 s.                         | 540 s.                       |
| 396    |          | 1160      | 1150 v.s. | 658 s.                         | 638                            | 598                          |
|        | 599 s.   | 1189      | 1183 v.s. | 699 s.                         | 729                            | 628                          |
| 618    |          | 1222      |           | 747 s.                         | 818                            | 671 s.                       |
| 656    | 664 s.   |           | 1238      | 792 v.s.                       | 833                            | 704                          |
|        | 676      | 1254      |           | 895 v.s.                       | 852 v.s.                       | 728                          |
|        | 699 s.   |           | 1290      | 974                            | 888?                           | 742 s.                       |
| 771    | 771 s.   | 1324      | 1325 v.s. | 1006                           | 913                            | 782 s.                       |
| 839    | 844      |           | 1360      | 1062                           | 947                            | 822 s.                       |
|        | 900      |           | 1390      | 1085                           | 962                            | 850                          |
|        | 923 s.   |           | 1412      | 1152 v.s.                      | 1020                           | 887 s.                       |
|        | 970      |           | 1430      | 1182 v.s.                      | 1075 s.                        | 912 s.                       |
|        | 992      |           | 1455 s.   | 1215                           | 1095                           | 940                          |
| 1005   | 1005     |           | 1540      | 1240                           | 1105                           | 1047 s.                      |
| 1027   | 1027 s.  | 1585      |           | 1278                           | 1150 v.s.                      | 1115                         |
| 1068   | 1065     | 1611      | 1615 s.   | 1335 v.s.                      | 1175 v.s.                      | 1172 s.                      |
|        |          |           |           | 1395                           | 1250 v.s.                      | 1193                         |
|        |          |           |           | 1429                           | 1335 v.s.                      | 1260                         |
|        |          |           |           | 1447                           | 1403                           | 1278 s.                      |
|        |          |           |           | 1458                           | 1418                           | 1333 s.                      |
|        |          |           |           | 1493                           | 1515 s.                        | 1430                         |
|        |          |           |           | 1524                           | 1605 s.                        | 1441 s.                      |
|        |          |           |           | 1600                           | 1658                           | 1495 s.                      |
|        |          |           |           | 1700                           |                                | 1511                         |
|        |          |           |           |                                |                                | 1616                         |
|        |          |           |           |                                |                                | 1631                         |
|        |          |           |           |                                |                                |                              |

Fig. 3 shows the spectra between 6 and  $20\mu$  of o-, m-, and p-fluoro- and 2:4-difluoro-toluenes, measured as liquids in layers less than 0-1 mm, thick, and also depicts the contours of some of the bands found for the vapours of m- and p-fluorotoluenes. The spectra are again too complex for detailed analysis, but a few features may be noted. The bands appear in general more intense than with unsubstituted toluene. Strong bands between 700 and 900 cm.<sup>-1</sup> characteristic of an out-of-plane bending mode of the C-H bonds of an aromatic nucleus have previously been correlated with substituted aromatics (Thompson and Torkington, *Trans. Faraday Soc.*, 1945, **41**, 285). The bands of o-fluorotoluene near 750 cm.<sup>-1</sup>, of *m*-fluorotoluene near 775 cm.<sup>-1</sup>, of *p*-fluorotoluene near 820 cm.<sup>-1</sup>, and of 2 : 4-difluorotoluene near 810 cm.<sup>-1</sup> are probably attributable to this mode. The positions of the bands (cm.<sup>-1</sup>) are listed in Table II, which also gives the Raman intervals for o-, *m*-, and *p*-fluorotoluene found by Kohlrausch (*Sitz. Akad. Wiss. Wien*, 1933, **142**, IIb, **65**0). Fig. **4** shows the spectra between 6 and 20µ of benzotrifluoride, and its *m*-fluoro-, *p*-fluoro-, and

Fig. 4 shows the spectra between 6 and  $20\mu$  of benzotrifluoride, and its *m*-fluoro-, *p*-fluoro-, and 2:5-difluoro-derivatives, measured as liquids and vapours. Table III lists the positions (cm.<sup>-1</sup>) of the bands, with Raman data for benzotrifluoride given by Pendl and Radinger (*ibid.*, 1939, 148, IIb, 76). It is noteworthy that all these compounds show intense bands near 1330 and 1150 cm.<sup>-1</sup> which may be connected with vibrations of the CF<sub>3</sub> group. The band of benzotrifluoride at 771 cm.<sup>-1</sup> is probably associated with an out-of-plane bending mode of the monosubstituted benzene, but if so, it is noticeably higher than is usually found. This could arise as a result of electronic influences of the CF<sub>3</sub> group on the strengths of the neighbouring bonds. Similarly, the corresponding out-of-plane C-H bending mode of the *m*-substituted compound lies at 792 cm.<sup>-1</sup>, and that of the *p*-derivative probably at 850 cm.<sup>-1</sup>, in both cases higher than normal. Substitution by fluorine in the different ways also seems to affect the values and relative intensities of the two vibration bands near 1500 and 1600 cm.<sup>-1</sup> associated with the aromatic nucleus.

The above results may be useful in connexion with analyses of mixtures containing these compounds. Further, although the spectra of the fluorocarbons between 2 and  $6\mu$  have not been shown, it may be noted that small quantities of residual C-H linkages should be detectable by their bands near  $3 \cdot 4\mu$ , where the fluorocarbons themselves have very weak absorption. As regards more detailed vibrational or structural analysis, however, further consideration must await the compilation of results with other substances of this type.

We are grateful to I.C.I. (General Chemical Division) Ltd. for the substances listed. We also thank the Government Grant Committee of the Royal Society for help in the purchase of equipment, and one of us is indebted to the Department of Scientific and Industrial Research for a maintenance grant.

THE PHYSICAL CHEMISTRY LABORATORY, OXFORD.

[Received, August 25th, 1947.]